

Fernando Aguado-Agelet University of Vigo - INTA

August 10th 2008

2008 Cubesat Summer Developer's Workshop

Project Presentation

University of Vigo: Leader Spanish university in R+D devoted resources 260 research groups, 50 European projects, 25 patents.

INTA: Public research organization specialized in aerospace research and technology development. Experience in aerospace with many national and international projects.

Both institutions have agreed to collaborate in the development of XATCOBEO.

Mission Description

XATCOBEO: design & development of a satellite as educational demonstrator based in OPTOS experience

XATCOBEO SYSTEM:

SPACE SEGMENT (Cubesat 1U) + GROUND SEGMENT + USER SEGMENT

University of Vigo's responsibilities: Educational matters Design and development of new technologies

INTA's responsibilities: Support in engineering and management AIV facilities and expertise

Educational satellite system with professional reliability

Mission Description

Standards: CubeSAT Design Specification (Rev 10) ESA ECSS standards: Space Project Management (ECSS-M-00) Space Project Engineering (ECSS-E-00) Model Philosophy: PFM **Mission objectives:** To contribute to the CubeSAT community with: Qualification of a new deployment mechanism Qualification of a 2 payloads To integrate students in a CubeSAT development with high-end requirements

Emphasis in working methodology (HOW is more important than WHAT)

XATCOBEO: Objectives

Design and development of:

- CubeSAT satellite 1U (10x10x10cm) Weight < 1kg

Ground segment (at the University of Vigo)
To involve students in a space project
To learn work methods based on ESA standards
New technologies incorporated (SRAD, RDS, PDM)
Launching with VEGA at the end of 2009

SPONSORS

□ Xunta de Galicia/Retegal (DIESTE agreement)

Department of Science and Investigation

Raminovatech

7

PROJECT ORGANIZATION

• ORGANIZATION PROBLEMS

Project Organization

- Mixed teams INTA/UVIGO
- More than 40 people creating software, hardware and documents at the same time.

Project Organization

SOLUTION

Hierarchical organization

Electronic Management

Project Organization

11

• HIERARCHY

- Tasks are split into
 WorkPackages (WP).
 Each WP is assigned to a different team.
 Each team is formed by:
- 1 supervisor
- 1 student responsible
- N members and cooperators

Project Organization

• ELECTRONIC MANAGEMENT

SPACE SEGMENT

XATCOBEO: Subsystems (I)

D Power:

- Lithium battery
- Solar panels: 2 cells on each side

□ Software:

- C code
- Modes: Start-Normal-Communications-Safe

Computer:

Microprocessor embedded in programmable logic device (FPGA)

TNC

XATCOBEO: Subsystems (II)

Communications:

- 4 antennas (TBC), omnidirectional radiation diagram
- Uplink for telecommands, downlink for telemetry, in ham radio frequencies

□ Thermic:

- Passive thermic control
- Paints and insulating materials
- Conductive materials depending on cases

□ Structure and mechanisms:

- Structure: CubeSAT 1U
- Mechanism of deployment of antennas

XATCOBEO: Experiments

Payloads:

- Software RADio board for communications (SRAD):
 - \checkmark Software radio that can be configured on board
- Radiation Dose Sensor (RDS):
 - \checkmark Sensor to measure radiation

□ Panel Deployer Mechanism (PDM):

Try out on board a mechanism of deployment

•It is based on commercial RADFET technology

GROUND SEGMENT

Ground Segment

XATCOBEO: Ground Segment

Some Pictures

Fernando Aguado-Agelet: faguado@xatcobeo.com University of Vigo - INTA

August 10th 2008

2008 Cubesat Summer Developer's Workshop